Mark Scheme SHM Paper Questions Jan 2002—Jan 2010 (old spec) - 1(a) forced vibrations or resonance \checkmark (1) - (b) reference to natural frequency (or frequencies) of structure ✓ driving force is at same frequency as natural frequency of structure ✓ resonance ✓ large <u>amplitude</u> vibrations produced or large energy transfer to structure ✓ could cause damage to structure [or bridge to fail] ✓ max(4) - (c) stiffen the structure (by reinforcement) ✓ install dampers or shock absorbers ✓ [or other acceptable measure e.g. redesign to change natural frequency or increase mass of bridge or restrict number of pedestrians] (2) (7) - 2(a) use of mg = ke gives $k = \frac{0.20 \times 9.81}{3.5 \times 10^{-2}}$ Q2 Jan 2002 = $56 \text{ N m}^{-1} \checkmark \text{ [or kg s}^{-2}\text{]}$ (2) - (b)(i) $28 (\text{N m}^{-1}) \checkmark$ (unit to be given in either (a) or (b)) (allow C.E. from (a)) - (ii) (use of $T = 2\pi \sqrt{\frac{m}{k}}$ gives) $T = 2\pi \sqrt{\frac{0.50}{28}} = 0.84$ (s) \checkmark (allow C.E. for value of k from (b)(i)) number of oscillations per minute $= \frac{60}{0.84} = 71$ \checkmark (allow C.E. from (b)(ii)) <u>(5)</u> 1(a) (use of $$T = 2\pi \sqrt{\frac{l}{g}}$$ gives) $T = 2\pi \sqrt{\frac{0.80}{9.81}}$ = 1.8 s \checkmark Q1 Jan 2003 (b) $$mgh = \frac{1}{2} mv^2 \checkmark$$ $v = \sqrt{(2 \times 9.81 \times 20 \times 10^{-3})} \checkmark (= 0.63 \text{ m s}^{-1})$ $v_{\text{max}} = 2\pi fA = \frac{2\pi A}{I} \checkmark$ $A = \frac{0.63 \times 1.8}{2\pi} \checkmark (= 0.18 \text{ m})$ [or by Pythagoras $A^2 + 780^2 = 800^2 \checkmark$ gives $A = \sqrt{(800^2 - 780^2)}$ \checkmark (= 180 mm) (or equivalent solution by trigonometry \checkmark \checkmark) $$v_{\text{max}} = 2\pi f A \text{ or } = \frac{2\pi A}{I} \checkmark$$ $$= \frac{2\pi \times 0.18}{1.8} \checkmark (= 0.63 \text{ m s}^{-1})] \tag{4}$$ (c) tension given by F, where $$F - mg = \frac{mv^2}{l}$$ $$F = 25 \times 10^{-3} \left(9.81 + \frac{0.63^2}{0.8} \right) = 0.26 \text{ N } \checkmark$$ (2) (8) Question 1 Q1 Jan 2005 (a) acceleration is proportional to displacement ✓ acceleration is in opposite direction to displacement, or towards a fixed point, or towards the centre of oscillation ✓ (2) (b)(i) $$f = \frac{25}{23} = 1.1 \,\text{Hz} \,(\text{or s}^{-1}) \checkmark$$ (1.09 Hz) (ii) (use of $$a = (2\pi f)^2 A$$ gives) $a = (2\pi \times 1.09)^2 \times 76 \times 10^{-3} \checkmark$ = 3.6 m s⁻² \checkmark (3.56 m s⁻²) (use of $f = 1.1$ Hz gives $a = 3.63$ m s⁻²) (allow C.E. for incorrect value of f from (i)) (iii) (use of $$x = A \cos(2\pi ft)$$ gives) $x = 76 \times 10^{-3} \cos(2\pi \times 1.09 \times 0.60) \checkmark$ = $(-)4.3(1) \times 10^{-2}$ m \checkmark (43 mm) (use of $f = 1.1$ Hz gives $x = (-)4.0(7) \times 10^{-2}$ m (41 mm)) direction: above equilibrium position or upwards \checkmark (6) - (c)(i) graph to show: correct shape, i.e. cos curve ✓ correct phase i.e. -(cos) ✓ - correct phase i.e. −(cos) ✓ (ii) graph to show: two cycles per oscillation ✓ correct shape (even if phase is wrong) ✓ correct starting point (i.e. full amplitude) ✓ $\frac{\max(4)}{(12)}$ | Question 1 | | | |------------|---|-------| | (a) (i) | $mg = ke \checkmark$ $k = \left(\frac{0.25 \times 9.81}{40 \times 10^{-3}}\right) = 61(.3) \text{ N m}^{-1} \checkmark$ Q1 Jan 2006 | | | (ii) | $T\left(=2\pi\sqrt{\frac{m}{k}}\right) = 2\pi\sqrt{\frac{0.69}{61.3}} \checkmark (= 0.667 \text{ s})$ $f\left(=\frac{1}{T}\right) = \frac{1}{0.667} \checkmark (= 1.50 \text{ Hz})$ | 4 | | (b) (i) | forced vibrations (at 0.2 Hz) ✓ amplitude less than resonance (≈ 30 mm) ✓ (almost) in phase with driver ✓ | | | (ii) | resonance [or oscillates at 1.5 Hz] ✓ amplitude very large (> 30 mm) ✓ oscillations may appear violent ✓ phase difference is 90° ✓ | Max 6 | | (iii) | forced vibrations (at 10 Hz) \checkmark small amplitude \checkmark out of phase with driver [or phase lag of (almost) π on driver] \checkmark | | | | Total | 10 | | Question 1 | | | |------------|--|---| | (a) | shm is defined by acceleration ∞ displacement (from mean position) ✓ explanation of – sign ✓ (e.g. acceleration is in opposite direction to displacement, or is always directed towards a fixed point, or towards equilibrium position) | 2 | | (b) (i) | $T\left(=2\pi\sqrt{\frac{1}{g}}\right) = 2\pi\sqrt{\frac{0.64}{9.81}} \checkmark \qquad \text{gives } T = 1.60 \text{ (s)} \checkmark$ time for bob to travel from A to C = $T \div 4 = 0.40 \text{ s} \checkmark$ Q1 Jan 2009 | | | (ii) | max speed of bob $v_{\text{max}} = 2 \pi f A \checkmark$ $= \frac{2\pi \times 44 \times 10^{-3}}{1.60} \checkmark (= 0.173 \text{m s}^{-1})$ $\max E_{\text{K}} \text{ of bob } (= \frac{1}{2} m v_{\text{max}}^{2}) = \frac{1}{2} \times 1.5 \times 10^{-2} \times 0.173^{2} \checkmark$ | 7 | | | $= 2.2(4) \times 10^{-4} \text{J} \checkmark$ $= 2.2(4) \times 10^{-4} \text{J} \checkmark$ [or max E_{K} of bob = E_{P} gained in moving from \mathbf{C} to \mathbf{B} \((1280 - Δh) Δh = 442 [or 6402 = 442 + (640 - Δh) ²] gives Δh = 1.52 (mm) \($= 2.2(4) \times 10^{-4} \text{J} \checkmark$ | | | | = 2.2(4) × 10 ⁻⁴ J ✓] | | | | Total | 9 | | Question 1 | | | |------------|---|-------| | (a) | mg = ke ✓ Q1 Jan 2010 | Sato. | | | $k = \frac{0.20 \times 9.81}{43 \times 10^{-3}} = 46 \mathrm{N m^{-1}} \checkmark (45.6)$ | 2 | | (b) (i) | new spring constant = 23 N m ⁻¹ ✓ (22.8) | | | | [unit of N m ⁻¹ or kg s ⁻² to appear in either (a) or (b) (i)] | | | (ii) | period $T \left(= 2\pi \sqrt{\frac{m}{k}} \right) = 2\pi \sqrt{\frac{0.50}{22.8}} = 0.930 \text{ (s) } \checkmark$ | 5 | | | number of oscillations per minute = $\frac{60}{0.930}$ = 65 \checkmark (64.5) | | | | [In (b)(ii), answer should be consistent with use of 0.50 kg and candidate's answer to (b)(i)] | | | | Total | 5 | | Question 1 | Q1 Jun 2005 | | |------------|--|-------| | (a) | reference to resonance \checkmark air set into vibration at frequency of loudspeaker \checkmark resonance when driving frequency = natural frequency of air column \checkmark more than one mode of vibration \checkmark stationary wave (in air column) \checkmark (or reference to nodes and antinodes) maximum amplitude vibration (or max energy transfer) at resonance \checkmark [alternative answer to (a): first two marks as above, remaining four marks for wave reflected from surface (of water) \checkmark interference/superposition (between transmitted and reflected waves) \checkmark maximum intensity when path difference is $n\lambda$ | Max 4 | | | maxima (or minima) observed when l changes by $\lambda/2 \checkmark]$ $\frac{\lambda}{2} = 523 - 168 \checkmark (= 355 \text{ mm})$ $\lambda = 710 \text{ mm} \checkmark$ $[\text{if } \frac{\lambda}{4} = 168, \text{ giving } \lambda = 670 \text{ mm}, \checkmark (1 \text{ max}) (672 \text{ mm})]$ $c(= f\lambda) = 480 \times 0.71 \checkmark$ $= 341 \text{ m s}^{-1} \checkmark$ $(\text{allow C.E. for incorrect } \lambda \text{ from (i)})$ $[\text{allow } 480 \times 0.67 = 320 \text{ m s}^{-1} \checkmark (1 \text{max}) (322 \text{ m s}^{-1})]$ | 4 | | Question 1 | | | |------------|---|---| | (a) | $f = \frac{1}{2\pi} \sqrt{\frac{g}{l}} $ Q1 Jun 2006 oscillations must be of small amplitude \checkmark | 2 | | | $f = \frac{25}{46.5} = 0.53(8) \text{ (s}^{-1}) \checkmark \text{ [or } T = \frac{46.5}{25} = 1.8(6) \text{ (s)]}$ $l\left(=\frac{g}{4\pi^2 f^2}\right) = \frac{9.81}{4\pi^2 0.538^2} \text{ [or } l\left(=\frac{T^2 g}{4\pi^2}\right) = \frac{1.86^2 \times 9.81}{4\pi^2} \text{]} \checkmark$ $l = 0.85(9) \text{ m} \checkmark$ (allow C.E. for values of f or T) | | | (ii) | $a_{\text{max}} \{ = (-)(2\pi f)^2 A \} = (2\pi \times 0.538)^2 \times 51 \times 10^{-3} \checkmark (= 0.583 \text{m s}^{-2})$ (allow C.E. for value of f from (i)) $F_{\text{max}} (= ma_{\text{max}}) = 1.2 \times 10^{-2} \times 0.583 \checkmark$ $= 7.0 \times 10^{-3} \text{N} \checkmark (6.99 \times 10^{-3} \text{N})$ [or $F_{\text{max}} (= mg \sin \theta_{\text{max}})$ where $\sin \theta_{\text{max}} = \frac{51}{859} \checkmark$ $= 1.2 \times 10^{-2} \times 9.81 \times \frac{51}{859} \checkmark$ $= 6.99 \times 10^{-3} \text{N} \checkmark [$ | 6 | | | Total | 8 | | Question 2 | Q2 Jun 2006 | | |------------|--|-------| | (a) | vibrates or oscillates or moves in shm \checkmark vibration/oscillation is vertical/perpendicular to wave propagation direction \checkmark frequency $(=c/\lambda) = 3.0 (\text{Hz}) \checkmark$ (or same as P) amplitude = 90 (mm) \checkmark (or same as P) Q has a phase lag on P \checkmark (or vice versa) phase difference of $\left(\frac{0.4}{1.2} \times 2\pi\right) = \frac{2\pi}{3}$ (rad) or $120^{\circ} \checkmark$ | max 5 | | (b) | use of $f = 3.0$ (Hz) \checkmark
$v_{\text{max}} (= 2\pi f A) = 2\pi \times 3.0 \times 90 \times 10^{-3} \checkmark$
$= 1.7(0) \text{m s}^{-1} \checkmark$ | 3 | | | Total | 8 | | Que | stion 1 | Q1 Jun 2007 | | |-----|---------|--|---| | (a) | (i) | P at any peak or trough ✓ Q at any point where velocity is zero and slope is negative ✓ | | | | (ii) | R at any point where velocity is zero ✓ acceleration is gradient of <i>v/t</i> graph which is a maximum at R | 4 | | | | [or in SHM acceleration is greatest when velocity is zero (or equivalent statement)] ✓ | | | (b) | (i) | $mg = ke$: static extension $e = \frac{0.40 \times 9.81}{28} = 0.14(0) \text{ m}$ | | | | (ii) | total extension = 0.140 + 0.060 = 0.200 m ✓
energy stored (= ½ F e) = ½ × (28 × 0.200) × 0.200 ✓ | | | | | = 0.56 J ✓ | | | | | (allow \checkmark for use of $\frac{1}{2}Fe$ if incorrect value is taken for e) | | | | | or $E_{\rm P}$ stored at equilibrium (= $\frac{1}{2}Fe$) = $\frac{1}{2}\times(28\times0.14)\times0.14$ | 4 | | | | = 0.274 (J) ✓ | | | | | maximum $E_{\rm K}$ of oscillating mass (= $\frac{1}{2} m (2 \pi f A)^2$) | | | | | = 0.050 (J) ✓ | | | | | total E_P stored = 0.274 + 0.050 + $m g A$ | | | | | $= 0.324 + (0.40 \times 9.81 \times 60 \times 10^{-3})$ | | | | | = 0.324 + 0.235 = 0.56 J ✓ | | | | | Total | 8 | | Question ' | | | |------------|---|-------| | (a) | $T\left(=2\pi\sqrt{\frac{m}{k}}\right)$ gives $\frac{1}{0.92}=2\pi\sqrt{\frac{400}{k}}$ ✓ Q1 Jun 2008 | | | | from which $k = 1.3(4) \times 10^4 \mathrm{N m^{-1}} \checkmark$ | 2 | | | [or by use of effective spring constant for all four springs: springs in parallel so $k' = 4k$ for a total mass of 1600 kg] | | | (b) (i) | when $t = 0.20 \mathrm{s}$ | | | | $x(=A\cos 2\pi ft) = 90\cos 2\pi (0.92 \times 0.20)$ | | | | gives x = 36(.3) mm ✓ | | | | downwards ✓ | | | (ii) | vertical speed v (= $2\pi f \sqrt{A^2 - x^2}$) | max 4 | | | $= 2\pi \times 0.92 \sqrt{((90 \times 10^{-3})^2 - (36.3 \times 10^{-3})^2)} \checkmark$ | | | | $[\mathbf{or}\ v = (-2\pi fA\ \sin\ 2\pi ft)]$ | | | | = (-) $2\pi \times 0.92 \times 90 \times 10^{-3} \sin (2\pi \times 0.92 \times 0.20) \checkmark$] | | | | gives $v = 0.47(6) \mathrm{m s^{-1}} \checkmark$ | | | (c) | same period maintained throughout graph ✓ | 2 | | | exponential decay of amplitude ✓ | 2 | | (d) (i) | resonance ✓ | 2 | | (ii) | 3300 (rev min ⁻¹) ✓ | 2 | | | Total | 10 |